CVC 223 CO-Oximeter Calibration Verification Controls

Level 5

FOOTNOTE

1. ORL - Outside Reportable Limits of Analyzer
2. DNA - Data Not Avaiable at itime of printing
3. Metlb range cannot determine linearity, caibration verification or reportable range.

INSTRUMENT MANUFACTURERS

 Accriva Diagnostics, San Diego, CA Instrumentation Laboratory, Lexington, MA Nova Biomedical, Waltham, MARadiometer America Westlake Radiometer America, Westlake, OH
Roche Diagnostics, Indianapolis, IN Siemens Healthcare Diagnostics, Deerfield, II

CVC 223 CO-Oximeter Calibration Verification Controls

LOT Set: 322342

Level 1: 35139
Level 2: 34873 Level 3: 34969 Level 4: 35066 Level 5: 35242

Level 1: 2024-09-30 Level 2: 2024-09-30 Level 3: 2024-09-30 Level 4: 2024-10-31 Level 5: 2024-09-30

REF $^{\text {CVC }} 223$
IVD

INTENDED USE
RNA Medical Brand CVC 223 CO-Oximeter Calibration Verification Controls RNA Mssayed materials used for confoxirming the eacaibration and linearity of total
are amoglobin and hemoglobin rractions on cO-Oximeter analyzers.
PRODUCT DESCRIPTION
CVC 223 is provided in five (5) distinct levels of total hemoglobin, oxyhemoglobin, and carboxyhemoglobin covering the physiologically
significant range of instrument performance. It also contains methemoglobin CVC 223 is packaged in sealed glass ampuls, each containing 1.2 mL of n. Ampuls are

Active Ingredients: CVC 223 i a purifie

carbon monoxide or treated hemoglobin solution that has been saturated with Carbon monoxide or treated with precise concentrations of carbon monoxide.
This control contains no preservatives and no human-based materials. It is considered good laboratory practice to follow the recommended "Universal
STORAGE
The expiration date stated on the CVC 223 packaging is for product stored at void exposure to freezing and temperatures greater than $8^{\circ} \mathrm{C}$. DIRECTIONS FOR USE
CVC 223 should be analyzed immediately after removal from refrigeration. It is best to run CVC 223 in the same manner as patient samples, however,
please refer to any specific instructions for your analyzer regarding the use of please reeren to any spectifi instruciic
these or any other control materials.

General Instructions

1. Calibrate your Co-O
If the analyzer is a a combination blood gas/CO-Oximetry system and twotions. calibration is suggested.
2. Beginning with level 11 , gently invert the ampul to mix the solution. Tap the ampul to restore the liquid to the bottom of the ampul
provided to protect fingers from cuts.
3. Record the results on the Data Collection and Linearity Worksheet provided
for each analyte.
(3) replicates are completed. (A fourth ampul of each level is provided in the event of accidental breakage or obvious sampling error.) Test levels 2 . 3,4, and 5 the same way. Record all values on the worksheets. the range on the Expected Values Chart. If your mean is within the range,
circle " Y " at the question "OK?" If your mean is outside the range, circle " N "
and take corrective action.
a) Using the graph area provided, plot the Test Value (mean) against the b) Expected Value.

Note: Steps 7 and 8 may be performed on-line as a feature of PeerQCㅇ
described below.

EXPECTED VALUES
The values for each control analyte on the enclosed Expected Values Chart are based on multiple determinations performed on randomly selected samples
from each lot. The listing for each instrument represents the expected range from each lot. The listing for es
and mean value of this range.
The Expected Values are provided as a quide in evaluating analyzer The Expected Values are provided as a guide in evaluating analyzer
performance. Since instrument design and operating conditions may vary, each laboratory should establish its own acceptance criteria.
STATISTICAL SUPPORT
RNA Medical PeerQC, available at www.RNAMedical.com, features webbased graphing and reporting for its Cailibration Verification Controls ant is
available at no charge to RNA Medical customers. The graphing steps outiined above may be performed on-line as a feature of this service. Please contact RNA Med
product.

LIMITATIONS

1. Extended exposure to temperatures greater than $8{ }^{\circ} \mathrm{C}$ will affect product performance. If CVC 223 has turned brown in color, this change indicates
deterioration and the formation of methemoglobin. In such a case, the deterioration and the formation of methemoglobin. In
control is not suitable for use and should be discarded.
2. The methemoglobin in this control can confirm product storage temperature integrity as well as the performance of the MetHb channel on COOximeters. Because of its limited range of values, it will not be of significant value in dete
for Methb.
3. CVC 223 is sensitive to many instrument related factors that would affect red cells. Theref. It is a bovine blood-based material but does not contain red cells. Therefore, it may not detect certain malfunctions that would affect
the testing of human blood. 4. This product is intended for use as a quality control material and can assist in evaluating the performance of laboratory instruments. It is not for use as
a calibration standard and its use should not replace other aspects of a a comiblete quality control program.
cond

CVC 223 CO-Oximeter Calibration Verification Controls

CVC 223 CO-Oximeter Calibration Verification Controls

LOT 34969 2024-09-30

Expected Values Chart	$\begin{aligned} & \text { thbl } \\ & \mathrm{g} / \mathrm{daL} \end{aligned}$		$\mathrm{O}_{\mathrm{2}}^{\mathrm{H} \mathrm{Hb}}$		$\begin{gathered} \text { coHb } \\ \hline \end{gathered}$		$\underset{\%}{\text { Methb }}$	
Analyzers	mean	range	mean	range	mean	range	mean	range
Accriva								
AVOXimeter 1000 E	13.1	12.0 - 14.2	80.4	76.1-84.7				
AvOXimeter 4000	13.1	12.0-14.2	81.2	76.9-85.5	20.7	16.2-25.2	0.6	-2.4-3.5
IL								
482	DNA ${ }^{2}$							
682	12.7	11.7-13.7	82.7	78.7-86.7	18.8	14.8-22.8	0.2	-1.8-2.2
Synthesis Series	12.9	11.9-13.9	84.9	80.9-88.9	17.7	13.7 - 21.7	0.0	-2.0-2.0
GEm OPL	13.1	12.0-14.2	81.2	76.9-85.5	20.7	16.2-25.2	0.6	-2.4-3.5
GEM Premier 4000	12.7	11.7-13.7	84.3	80.3-88.3	14.9	10.9-18.9	0.5	-1.5-2.5
GEM Premier 5000	12.9	11.9-13.9	83.6	79.6-87.6	15.0	11.0 - 19.0	0.4	-1.6-2.4
Nova								
ccx	13.7	12.7-14.7	86.1	82.1-90.1	13.0	9.0-17.0	0.1	-1.9-2.1
pHox Ulitra	DNA ${ }^{2}$		DNA ${ }^{2}$		DNA ${ }^{2}$		DNA	
Radiometer								
ABL 700 Series	13.2	12.2-14.2	85.1	81.1-89.1	13.2	9.2-17.2	1.1	-0.9-3.1
ABL 800 Series	13.3	12.3-14.3	84.5	80.5-88.5	13.0	9.0-17.0	1.1	-0.9-3.1
ABL 80 Series	DNA ${ }^{2}$		DNA ${ }^{2}$		DNA ${ }^{2}$		DNA	
ABL 90 Series	DNA ${ }^{2}$		DNA ${ }^{2}$		DNA ${ }^{2}$		DNA	
Roche								
Cobas b 221	12.4	11.4-13.4	84.3	80.3-88.3	15.0	$11.0-19.0$	0.4	-1.6-2.4
OMN Series	12.6	11.6-13.6	84.6	80.6-88.6	14.1	10.1-18.1	0.9	-1.1-2.9
Siemens								
400 Series	14.1	13.1 - 15.1	84.5	80.5-88.5	15.1	11.1 - 19.1	0.0	-2.0-2.0
500 Series	14.3	13.3-15.3	84.8	80.8-88.8	15.1	11.1-19.1	0.1	-1.9-2.1
1200 Series	14.0	13.0-15.0	84.3	80.3-88.3	15.4	11.4-19.4	0.3	-1.7-2.3

LOT 35066								
Expected Values Chart	$\begin{gathered} \mathrm{tHb} \\ \mathrm{~g} / \mathrm{daL} \end{gathered}$		$\mathrm{O}_{2} \mathrm{Hb}$		$\underset{\%}{\text { coHb }}$		$\underset{\%}{\text { Methb }}$	
$\overline{\text { Analyzers }}$	mean	range	mean	range	mean	range	mean	range
Acrriva								
AVOXimeter 1000 E	17.2	15.9-18.5	53.1	488.8-57.4				
AVOXimeter 4000	17.0	15.7-18.3	54.5	50.2-58.8	47.5	42.2-52.8	0.2	-2.7-3.1
IL								
482	DNA ${ }^{2}$							
682	16.1	14.9-17.3	52.8	48.8-56.8	48.2	44.2-52.2	0.0	-2.0-2.0
Synthesis Series	16.0	14.8-17.2	58.1	54.1-62.1	46.4	42.4-50.4	-0.1	-2.1-1.9
GEm OpL	17.0	15.7-18.3	54.5	50.2-58.8	47.5	42.2-52.8	0.2	-2.7-3.1
GEM Premier 4000		15.2-17.6	54.1	$50.1-58.1$	44.0	40.0-48.0	0.7	-1.3-2.7
GEM Premier 5000	16.7	15.5-17.9	53.9	49.9-57.9	43.8	39.8-47.8	0.7	-1.3-2.7
Nova ${ }^{\text {a }}$								
CCX	18.0	16.8-19.2	57.3	53.3-61.3	42.4	38.4-46.4	-0.1	-2.1-1.9
pHox Ulita	DNA		DNA ${ }^{2}$		DNA ${ }^{2}$		DNA ${ }^{2}$	
Radiometer								
ABL 700 Series		15.0-17.4	56.8	52.8-60.8	42.8	38.8-46.8	2.3	0.3-4.3
ABL 800 Series	16.7	15.5-17.9	55.9	51.9-59.9	42.8	38.8-46.8	2.6	0.6-4.6
ABL 80 Series	DNA ${ }^{2}$							
ABL 90 Series	DNA ${ }^{2}$							
Roche								
Cobas b 221	15.8	14.6-17.0	54.1	50.1-58.1	44.2	40.2-48.2	0.3	-1.7-2.3
OMN Series	15.9	14.7-17.1	55.6	51.6-59.6	42.0	38.0-46.0	0.9	-1.1-2.9
Siemens								
400 Series	17.4	16.2-18.6	56.9	52.9-60.9	42.6	38.6-46.6	0.1	-1.9-2.1
500 Series	17.8	16.6-19.0	56.4	52.4-60.4	42.7	38.7-46.7	0.4	-1.6-2.4
1200 Series	17.6	16.4-18.8	55.6	51.6-59.6	43.3	39.3-47.3	0.5	-1.5-2.5

